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THIS WHITEPAPER PROVIDES AN INITIAL SUMMARY OF CERTAIN TECHNICAL AND BUSINESS ESSENTIALS
UNDERLYING THE VEGA PROTOCOL. THIS DOCUMENT IS EXPECTED TO EVOLVE OVER TIME, AS THE PROJECT
PROCEEDS. THE VEGA TEAM MAY POST MODIF ICATIONS, REVISIONS AND/OR UPDATED DRAFTS FROM
TIME TO TIME, INCLUDING BEFORE, DURING, AND AFTER THE CREATION OF ANY TOKENS, AND WHILST
NETWORK(S) BASED ON THE VEGA PROTOCOL (‘VEGA NETWORKS’) ARE IN OPERATION.

THIS DOCUMENT SETS FORTH A DESCRIPTION OF THE VEGA PROTOCOL, REFERENCE SOFTWARE IMPLE-
MENTATION, AND POTENTIAL VEGA NETWORKS. THIS INCLUDES DESCRIPTIONS OF THE PROTOCOL ITSELF,
‘SMART PRODUCTS’, AND THE USE OF TOKENS SUCH AS THE PROPOSED VEGA TOKEN. THIS DOCUMENT IS
PROVIDED FOR INFORMATION PURPOSES ONLY AND IS NOT A BINDING LEGAL AGREEMENT. ANY SALE OR
OTHER OF FERING OF VEGA TOKENS WOULD BE GOVERNED BY SEPARATE TERMS & CONDITIONS. IN THE
EVENT OF CONF LICT BETWEEN APPLICABLE TERMS & CONDITIONS AND THIS DOCUMENT, THE TERMS &
CONDITIONS GOVERN.

THIS WHITEPAPER IS NOT AN OF FERING DOCUMENT OR PROSPECTUS, AND IS NOT INTENDED TO PROVIDE
THE BASIS OF ANY INVESTMENT DECISION OR CONTRACT.

Legal disclaimer

As of the date of publication, the Vega team have no plans to launch any public Vega Networks, and Vega Tokens are a proposed token
with no known potential uses outside of Vega Networks, and no such use is intended. This document does not constitute advice nor a
recommendation by the Vega team, its officers, directors, managers, employees, agents, advisers or consultants, or any other person to any
recipient of this document on the merits of purchasing, otherwise acquiring, or holding Vega Tokens or any other cryptocurrency or token.
The purchase and holding of cryptocurrencies and tokens carries substantial risks and may involve special risks that could lead to a loss of
all or a substantial portion of any money invested. Do not purchase tokens unless you are prepared to lose the entire amount allocated to
the purchase.

Vega Tokens, if and when they are created and made available, should not be acquired for speculative or investment purposes with
the expectation of making a profit or immediate re-sale. They should be acquired only if you fully understand the intended functionality
of the Vega Tokens, and you intend to use the Vega Tokens for those purposes only, and it is legal for you to do so. No promises of future
utility or performance or value are or will be made with respect to Vega Tokens, including no promise any Vega Networks will be launched,
no promise of inherent value, no promise of any payments, and no guarantee that Vega Tokens will hold any particular value.

Vega Tokens are not designed and will not be structured or sold as securities. Vega Tokens will hold no rights and confer no interests
in the equity of the Vega business or any future Vega Networks. Vega Tokens are designed and intended for future use on public Vega
Networks that may be created using the Vega protocol, for the purposes of trading and governance transactions, or for the operation of a
node. Proceeds of any sale of Vega Tokens may be spent freely by Vega for any purpose, including but not limited to the development of
its business and underlying technological infrastructure, absent any conditions set out in this document.

This whitepaper is not a prospectus or disclosure document and is not an offer to sell, nor the solicitation of any offer to buy any
investment or financial instrument or other product in any jurisdiction and should not be treated or relied upon as one. Any distribution of
this whitepaper must be of the complete document including the cover page and this disclaimer and the accompanying boilerplate in their
entirety.

All information in this document that is forward looking is speculative in nature and may change in response to numerous outside
forces, including technological innovations, regulatory factors, and/or currency fluctuations, including but not limited to the market value
of cryptocurrencies.

This whitepaper is for information purposes only and will be subject to change. The Vega team cannot guarantee the accuracy of the
statements made or conclusions reached in this whitepaper. The Vega team does not make and expressly disclaims all representations and
warranties (whether express or implied by statute or otherwise) whatsoever, including but not limited to: any representations or warranties
relating to merchantability, fitness for a particular purpose, suitability, wage, title or non-infringement; that the contents of this document
are accurate and free from any errors; and that such contents do not infringe any third party rights.

The Vega business, Vega team, and operators of any Vega Networks shall have no liability for damages of any kind arising out of the
use, reference to or reliance on the contents of this whitepaper, even if advised of the possibility of such damages arising.

This whitepaper includes references to third party data and industry publications. The Vega team believes that the information
reproduced in this whitepaper is accurate and that the estimates and assumptions contained herein are reasonable. However, there are no
assurances as to the accuracy or completeness of this data. The information from third party sources contained herein has been obtained
from sources believed to be reliable; however, there are no assurances as to the accuracy or completeness of any included information.
Although the data is believed to be reliable, the Vega team has not independently verified any of the information or data from third party
sources referred to in this whitepaper or ascertained the underlying assumptions relied upon by such sources.

Please note that Vega is in the process of undertaking a legal and regulatory analysis of the functionality of the protocol, proposed
Vega Tokens, and the operation of its business. Following the conclusion of this analysis, the Vega team may decide to amend the intended
functionality of Vega Tokens in order to ensure compliance with any legal or regulatory requirements to which it is subject, which may
affect the utility, fungibility, or any other properties of Vega Tokens.

Any Vega Tokens could be impacted by regulatory action, including potential restrictions on the ownership, use, or possession of
such tokens. Regulators or other competent authorities may demand that the mechanics of the Vega Tokens be altered, entirely or in part.
Vega may revise the Vega protocol or Vega Token mechanics to comply with regulatory requirements or other governmental or business
obligations. Nevertheless, Vega believes it has taken all commercially reasonable steps to ensure that the design of Vega Tokens is proper
and in compliance with currently considered regulations as far as reasonably possible.

No regulatory authority has examined or approved any of the information set out in this whitepaper. The publication, distribution or
dissemination of this whitepaper does not imply compliance with applicable laws or regulatory requirements.

This entire document is © 2022, Gobalsky Labs Ltd. All rights reserved.
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Margins and Credit Risk 1. INTRODUCTION

1 Introduction

The primary financial risk facing a Vega network is credit risk. On a platform where counter-
parties may be identified by no more than a public key, there is no recourse in the event that
a trader owes more in settlement than their posted collateral. It is therefore essential that the
protocol be designed to constantly maintain effective collateralisation for all positions.

On a traditional exchange, the biggest risk is that prices move in such a way that a participant
is unable to meet her / his obligations (she / he defaults). This exposes the exchange to a loss
that has to be covered by the operator or shared amongst the remaining solvent participants.
Traditional exchanges keep margins: participants are required to post collateral in form of cash or
securities so that with very high probability any market moves will not expose the exchange to a
loss.

On an anonymous distributed exchange the risk is amplified since a participant may choose to
leave whenever her / his liabilities exceed the posted margin. Indeed: as she / he is anonymous,
leaving the network carries no loss in terms of reputation. Moreover she / he can re-join the
exchange under a new identity and carry on, thus maintaining all her / his benefits.

1.1 Financial derivatives

On Vega, a wide range of financial derivates1 can be described by Vega smart products. These are
a special type of smart contract designed to allow creation financial derivatives from a toolkit
of standard features and economic primitives. See [5]. In particular, given appropriate market
inputs (e.g. prices of certain asset at required dates) a smart product will calculate all the cash-
flows required for settlement.

Before we can talk about the risk of a financial derivative we need to be able to calculate the
probability distribution (within some appropriate stochastic model) of future prices of such a de-
rivative. Any financial derivative can be priced with an appropriate model using arbitrage based
arguments. The basic idea is this: say we have an arbitrage-free model2 of some assets traded
assets. Say we have a derivative with a price based on these assets (e.g. our model can contain
a risky asset representing some stock and our derivative may be a forward or a call option). The
idea is to find a price for that derivative such that if the model allows trading in the derivative
asset then it stays free of arbitrage, see e.g. [10].

1.2 Margin versus credit risk

A Vega market participant who has traded a financial derivative is exposing the network to credit
risk in case the current price of the derivative is below the price the trade has been made (he /
she incurred a loss). We must assume that in this situation, in the absence of other measures, a
rational trader will leave the Vega network, assume a new identity and try his / her luck again.

To prevent this, the Vega network will ask traders to post collateral up to a certain margin
level. If we were in a situation where the margin can be adjusted in continuous time (i.e. all the
time) then we would simply require that the margin amount exceeds the sum of the present value
of all the liabilities arising from derivative trades a participant has on the exchange.

However the margin amounts can only be updated at discrete time points (for a traditional
exchange this is daily, a blockchain based exchange can re-calculate much more often but finally
still only at discrete time-steps). Thus we need to answer the following: what is a reasonable
worst case scenario for how much the price of a derivative contract can change in one discrete

1The term “derivative” indicates that the cashflows arising in such a contract are determined (derived) from prices /
exchange rates / interest rates that can be observed in other markets.

2 We know that in practice financial markets are not free of arbitrage. The logic of arbitrage-free pricing relies on
the idea that any arbitrage that may exist is discovered and exploited by traders so quickly that it doesn’t impact the
derivative with a much longer time-scale.
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Margins and Credit Risk 2. EXPECTED SHORTFALL AS COHERENT RISK MEASURE

fixed time step (call this τ > 0)? We wish our margin amount to exceed the current derivative
value plus this worst case scenario to protect the other exchange participants. We will use coherent
risk measures to account for this worst case scenario.

1.3 Other financial risks

The aim of this document is to describe how Vega will calculate margins required to protect
against the credit risk traders create on the exchange. There are other financial risks that arise
and are beyond the scope of the document. These are in particular liquidity risk, model risk and
calibration risk. We will briefly describe them below.

Consider first the liquidity risk which arises in the following situation. Our margin calculation
determines that a participant has exceeded their margin (i.e. their posted margin is below min-
imum margin). The exchange will wish to close out the trade by executing an opposite one (so
that the non-defaulting trader is not affected by being made counterparty to this new trade).

If the notional of the trade exceeds anything that’s on the order book then there is a problem:
we don’t have enough liquidity to execute the close-out trade. In practice Vega will mitigate this
risk by obliging market makers to provide sufficient liquidity, see [14]. In the rare cases where
there is no way to close out the trade, a position-resolution algorithm will be employed, again
see [14].

The model risk arises as follows. The model is not the world but only an approximation3. Model
risk attempts to captures the gap between reality and the model. This risk is hard to quantify: to
quantify such risk we would ideally like a better model but then why not just price with this
better model?

The calibration risk arises from whichever calibration procedure is used to obtain appropriate
model parameters. Model calibration relies on obtaining market data (historical time series data
or current market prices of other derivatives) and using these to choose model parameters so
that the model represents current market conditions as well as possible. Calibration relies on
appropriate choices: which time-window is to be used for calibration from historical data? Should
we give recent data more weight? If we use other market observables to calibrate the model how
do we choose which ones to use? Again calibration risk is inherently difficult to quantify. Obtaining
a consensus on correct calibration in a distributed system is a problem that can only be solved with
appropriate economic incentives, see [16].

2 Expected Shortfall as Coherent Risk Measure

We start by briefly explaining what are the desirable properties of a risk measure. In general a risk
measure is a function, say ρ, which assigns a real-number to a random variable. We think of the
random variable X as a payout from a portfolio4. A “good” risk measure will have the following
properties:

i) Monotonicity: if Y is another portfolio payout s.t. X ≤ Y then ρ(X) ≥ ρ(Y). So the portfolio
that always pays less is deemed more risky.

ii) Cash invariance: if m ∈ R then ρ(X + m) = ρ(X)− m. So adding a non-random cash amount
to a portfolio reduces the risk exactly by that amount.

iii) Positive homogenienty: if c > 0 then ρ(cX) = cρ(X). If we e.g. double our portfolio then the
risk also doubles.

3 Famously, George Box is quoted as saying: “The most that can be expected from any model is that it can supply a
useful approximation to reality: All models are wrong; some models are useful.”

4Some texts on the subject are written from the point of view of thinking about losses, this means that reading those
signs etc. are flipped!
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Margins and Credit Risk 2. EXPECTED SHORTFALL AS COHERENT RISK MEASURE

iv) Subadditivity: if Y is another portfolio payout then ρ(X + Y) ≤ ρ(X) + ρ(Y). This means
that a diversified portfolio X + Y will have risk that does not exceed that of X and Y taken
separately.

A risk measure satisfying all the above will be called coherent, see [7].

We wish to consider Expected shortfall as a risk measure. This is sometimes known as Average
value at risk or tail value at risk or conditional value at risk. As it is very closely related to the idea of
Value at risk, we consider that first.

2.1 Value at risk

We fix a level α > 0 small and consider X representing a payoff from a portfolio. Value at risk is
defined as the minimum amount x such that P(X + x < 0) is smaller than α. This is

VaRα(X) := inf{x ∈ R : P(X + x ≤ 0) ≤ α} .

Note that there are other, effectively equivalent, definitions.5

We will write FX to denote the distribution function6 of X i.e. FX(x) := P(X ≤ x). Note that if
X is a continuous r.v. then (with F−1

X denoting the inverse of the distribution of X)

VaRα(X) = inf{x ∈ R : −x ≤ F−1
X (α)} = inf{x ∈ R : x ≥ −F−1

X (α)} = −F−1
X (α) ,

since the inverse of an increasing function is increasing. We have monotonicity:

If X ≤ Y then VaRα(X) ≥ VaRα(Y).

We have cash invarience:

If m ∈ R then VaRα(X + m) = VaRα(X)− m.

We have positive homogeniety:

If c > 0 is a constant then VaRα(cX) = inf
!

x : P
"

X +
x
c
≤ 0

#
≤ α

$
= cVaRα(X).

2.2 Problems with VaR

The subadditivity property does not hold for VaR. This means that VaR does not correctly measure
the benefits of diversification and one should not ever sum up VaR values for different positions
as it has no meaning.

Moreover VaR only tells me how much capital to set aside to have some tolerably small prob-
ability of my portfolio being so negative as to the loss exceeding all this capital in a bad situation.
What VaR does not capture is the following: given that things are bad and the portfolio plus
capital are negative, how much do I actually expect to loose?

2.3 Expected shortfall

The Average Value at Risk / Expected Shortfall for a r.v. X representing payoff of portfolio and
λ ∈ (0, 1) is

ESλ(X) :=
1
λ

! λ

0
VaRα(X) dα . (1)

5 In particular the definition in [9] which is

VaRp(−X) := inf{x ∈ R : P(−X ≤ x) ≥ p} = VaRα(X)

for α = 1 − p.
6Also known as the cumulative distribution function
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If X is an absolutely continuous r.v.7 then

ESλ(X) = − 1
λ

! λ

0
F−1

X (α) dα = − 1
λ

! F−1
X (λ)

F−1
X (0)

z dFX(z)

=
1
λ

! F−1
X (λ)

−∞
−z dFX(z) =

1
FX(F−1

X (λ))
E
"
−X X<F−1

X (λ)

#

=
1

P(X < F−1
X (λ))

E
"
−X X<F−1

X (λ)

#

(2)

and so
ESλ(X) = E

%
− X

&& X < −VaRλ(X)
'

.

The expected shortfall tells us what is the expected loss given that we have breached the VaR
level. If the distribution of X is not continuous then

ESλ(X) = − 1
λ

(
E
%
X1X≤−VaRλ(X)

'
+ VaRλ(X) (P [X ≤ −VaRλ(X)]− λ)

)
(3)

Indeed we note that for X continuous P [X ≤ −VaRλ(X)] = P
"

X ≤ F−1
X (λ)

#
= λ and so the

additional term is simply 0.

We have monotonicity:
If X ≤ Y then ESλ(X) ≥ ESλ(Y).

Indeed, due to monotonicity of VaR,

ESλ(X) =
1
λ

! λ

0
VaRα(X) dα ≥ 1

λ

! λ

0
VaRα(Y) dα = ESλ(Y)

We have cash invarience: If m ∈ R then

ESλ(X + m) =
1
λ

! λ

0
(VaRα(X + m)) dα = ESλ(X)− m .

We have positive homogeniety: if c > 0 is constant then

ESλ(cX) =
1
λ

! λ

0
(VaRα(cX)) dα = cESλ(X) .

Finally, expected shortfall is also subadditive: for r.v.s X and Y we have

ESλ(X + Y) ≤ ESλ(X) + ESλ(Y) .

This is a key property that VaR doesn’t posses and this is what makes expected shortfall (together
with positive homogeniety) coherent. Proof of subadditivity can be found in [9].8 Expected short-
fall can be estimated with Monte-Carlo simulation. Say (xi)i∈N are independent samples from
the distribution of X. We can use expression (3) to devise a Monte–Carlo estimator. Thus we see
that we first need an empirical estimate for VaRλ(X). This is just the 100 · λ-percentile of (xi)i∈N

and we denote this VaRN
λ . Then

ESλ(X) ≈ − 1
λ

*
1
N

N

∑
i=1

(
xi xi<−VaRN

λ

)
+ VaRN

λ

+
N

∑
i=1

xi<−VaRN
λ
− λ

,-
. (4)

7 The distribution of an absolutely continuous r.v. has a density with respect to the Lebesgue measure.
8 Recall that [9] define value-at-risk differently, see footnote 5. They define expected shortfall as

ESp(−X) :=
1

1 − p

! 1

p
VaRq(−X) dq .

Then, using footnote 5 for first equality and change of variable for the second one and taking p = 1 − λ, we get

ESp(−X) =
1

1 − p

! 1

p
VaR1−q(X) dq =

1
λ

! λ

0
VaRα(X) dα = ESλ(X) .
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Margins and Credit Risk 3. MARGINS BASED ON EXPECTED SHORTFALL

However this is extremely inefficient because most of the samples are not going to be in the tail
of the distribution i.e. most samples will be xi ≥ −VaRN

λ . This means that most samples will be
rejected. One way to overcome this is to use a technique called importance sampling, see [6]. It may
be efficient to base a Monte-Carlo estimate on this equivalent expression for expected shortfall,
see [9] for derivation:

ESλ(X) = inf
v∈R

.
v +

1
λ

E[(−X − v)+]
/

. (5)

The Monte-Carlo estimate can thus be obtained via a one dimensional optimisation problem:

ESλ(X) ≈ inf
v∈R

0
v +

1
λ

1
N

n

∑
i=1

[(−xi − v)+]

1
.

3 Margins based on Expected shortfall

Our model will be based on a probability space (Ω,F , P) (that typically supports an n-dimensional
Wiener process (Brownian motion) W = (Wt)t∈[0,T]). The measure P is the real-world measure.

3.1 Abstract calculation

Given that we have an arbitrage free model for pricing our derivatives we have at least one risk-
neutral measure Q. See e.g. [10]. The current price of a derivative contract which pays X at time
T is9

pt = BtE
Q

2
X
BT

&&&Ft

3
. (6)

Here Bt is the price of our risk-free asset and Ft is the σ-algebra representing all the information
about assets in the model known at time t.

As we mentioned already if margin amounts were adjusted continuously (and ignoring model
risk) we would take the margin at time t, denoted mt to be simply equal to −pt (our trader sold
the derivative, so positive price is a liability for her / him).

In practice we will only be able to re-evaluate the margin requirement at discrete steps given
by τ > 0. Thus we wish the margin to cover the expected shortfall at some level λ ∈ (0, 1) i.e.

mt = ESλ(−pt+τ) .

3.2 Monte-Carlo based calculation

Let us say that our model contains assets S0, S1, . . . , Sm and that S0
t = Bt i.e. S0 is the risk-free asset

which provides discount factors. The payoff of an contingent claim at time T is a measurable
function of the paths of the underlying assets i.e. X = G((S0

t )t∈[0,T], (S1
t )t∈[0,T], . . . , (Sm

t )t∈[0,T]).
Moreover assume that assets prices are given by Markov processes. Then

mt = ESλ

+
−S0

t+τEQ

*
X
S0

T

&&&Si
t+τ , i = 0, . . . , m)

-,
. (7)

This tells us that we have to generate Monte-Carlo scenarios for Si
t+τ to be able to estimate the

expected shortfall.

9The price clearly depends on the risk-neutral measure used. In practice one tries to work with “complete markets”
in which case the measure is uniquely determined, or one models a liquid market where the measure is parametrised by
market price of risk and this is then calibrated to market data along with other model parameters.
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Thus for each asset i we generate N samples si,j from the distribution of Si
t+τ . Note that this

must be done in the distribution under the real-world measure P. This will be referred to as the
outer Monte-Carlo simulation. We can now let

Pj
t+τ |si,j := s0,jEQ

*
X
S0

T

&&&Si
t+τ = si,j, i = 0, . . . , m)

-
. (8)

We calculate VaRN
λ |si,j as the 100 · λ-percentile of (pj

t+τ)j∈N|si,j. As in (4) we will have

mt ≈
1
λ

1
N

N

∑
j=1

4
−pj

t+τ |si,j
pj

t+τ |si,j<−VaRN
λ |si,j

5
. (9)

Very often in practice we won’t be able to evaluate the conditional expectation in (8), i.e. the
conditional price of the derivative, exactly. So we will need an inner Monte-Carlo simulation: We
will need Ñ samples (xj

k|s
i,j)Ñ

k=1 from the distribution, under Q, of X|si,j as well as (s0,j
k |si,j)Ñ

k=1
samples from the distribution, under Q, of S0

T |si,j. Then

pj
t+τ |si,j ≈ s0,j 1

Ñ

Ñ

∑
k=1

xj
k|s

i,j

s0,j
k |si,j

. (10)

In practice we need to run a nested simulation. Say that N and Ñ are say 104. In such case
we need 108 Monte-Carlo samples. This may be prohibitively expensive. There are a number of
techniques to overcome this:

i) Some models lead to closed form formulae for the expected shortfall (7). In this case we avoid
Monte-Carlo simulation entirely.

ii) Some models allow closed form approximations for the expected shortfall (7). This may be
sufficiently accurate in itself. Even if the approximation doesn’t provide sufficient accuracy it
may be used to construct an efficient control variate for more efficient Monte-Carlo simulation.
See Glasserman [6] for more details on control variates.

iii) Replace the nested simulation algorithm with e.g. a regression based approach, see Broadie,
Du and Moallemi [8] or a multi-level based approach, see Giles and Haji-Ali [13].

iv) Find other efficient control variates for more efficient Monte-Carlo estimation of the inner loop.
See e.g. [12] or [15].

v) If (4) is used for the expected shortfall calculation, then we use VaRN
λ (the MC estimate of

value at risk) for λ that is typically small and the sample xi only contributes if xi < −VaRN
λ .

This indicates that importance sampling can be used to reduce the variance in the outer loop.

4 Tradable instruments, smart products, risk models

Vega uses smart product language to define all the cash-flows and their optionality in a financial
derivative. This specifies a product. Providing all the product parameters (e.g. strike price, ref-
erence oracle source) create an instrument. The key feature of an instrument is that it has to be
able to provide all settlement cashflows the derivative product provides. In particular, if ω ∈ Ω
represents a particular outcome of the world then at this point we can calculate the payoff10

X(ω) = G((S0
t )t∈[0,T](ω), (S1

t )t∈[0,T](ω), . . . , (Sm
t )t∈[0,T](ω)),

10We may want to think about payoffs in different underlying assets. Here we assume that if the payoff is in different
assets then we have the exchange rates between all the assets amongst the inputs so that X(ω) can be calculated as a value
in a given single currency.
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Type Example
Control variate name string ATMOption

Method name for MC valuation string BlackScolesCallMC

Method name for exact formula string BlackScolesPrice

Additional parameters key / value pairs Maturity=1, Strike=100

Table 1: Control variate specification in tradable instrument.

where G is a function of m paths of various underlying assets and in practice it is specified in
terms of a smart product language.

A tradable instrument on Vega has to specify a risk model with model parameters, (so a stochastic
model that can simulate future evolution of price trajectories both under an appropriate risk-
neutral measure and under a real-world measure). See [14, Section 3] for details.

Such tradable instrument now contains everything that is needed to evaluate (10) and (9) by
simulating future scenarios based on the risk model and its parameters and using the instrument
logic (provided ultimately by smart language) to provide all the cash-flows arising in such scen-
ario.

4.1 Control variates

Because of the computational expense of performing a naive nested simulation the tradable in-
strument can, as part of risk parameters, additionally specify which control variates should be used
in approximating the derivative price.

The plain Monte-Carlo estimator (10) is then replaced by the corresponding control-variate
Monte-Carlo estimator, see Glasserman [6, Ch. 4, Sec. 1] or [11]. It is possible to specify more than
one control variate.11

Simple derivative products in simple models (e.g. option prices in Black–Scholes model) can
be used as effective control variates for more complicated products or for efficient pricing under
more realistic models. It is therefore desirable that Vega has a large library of risk models provid-
ing analytic or semi-analytic formulae for a variety of derivatives as these will can be used to
provide control variates. See Section 5 for examples of analytic and semi-analytic formulae that
Vega risk models will provide.

4.2 Importance sampling

If the risk model provides the possibility of simulating paths under a different measure (which
may, for example, make rare events more likely), then the risk parameters may specify under
which measure to perform the simulation and how to perform a change of measure in the final
calculation to convert into the appropriate risk-neutral or real-world measures.

See Glasserman [6, Ch. 4, Sec. 6] for more details on how to find appropriate importance
sampling change-of-measures.

5 Models

Different asset classes will require use of different stochastic models. In this section we will give
details of the margin calculations in several classical models where a stochastic process models
the evolution of the asset price directly.12

11 However empirical estimate of the correlation matrix between the controls and the payoff X needs to be obtained
and the number of control variates needs to be kept relatively low.

12Such models cannot be used in particular for interest rate or credit derivatives.

7
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A model will be useful for margin calculations is it satisfies the following:

i) The model represents key features of the asset being modelled. In particular, the model can
provide fat-tailed distributions of the asset returns.

ii) There is an efficient method to calculate the expected shortfall and hence the minimum mar-
gin.

iii) There is an efficient method to calibrate the model to market data.

5.1 Black–Scholes model

The Black–Scholes model is a well known and classical model that would have been encountered
by any student of finance. In this model we assume that time-value of money is given by a risk-
free asset

dBt = rBt dt , B0 = 1

Take a one dimensional Wiener process (Brownian motion) W = (Wt)t∈[0,T]. We assume that in
the real world measure we have the risky asset price given by

dSt = µSt dt + σSt dWt , S0 = S .

The main advantage of this model is that it provides explicit formulae for expected shortfall
of forwards and good analytic approximation for expected shortfall of call and put option prices.
It is also easy to calibrate.

The main disadvantage of this model is that asset returns do not exhibit fat tails and moreover
the model cannot capture a key feature of asset being modelled: options on the asset exhibit
volatility smile.

Forwards in Black–Scholes model

We consider a forward contract which allows the purchase of one unit of a (risky) asset at a future
time T > t for K units of currency. The party that agrees to buy the asset, is taking a long position.

The long forward contract payoff (at time T) is ST − K. The fair present value of this is pt =

St − Bt
BT

K. We consider a trader who sold such contract (short position).

While no model for risky asset is needed to price forward contracts (the price follows form
no-arbitrage reasoning in a model-free way), we do need a model to assess the risk. We have at
time t + τ (with τ > 0 small, deterministic)

pt+τ = St+τ −
Bt+τ

BT
K .

The expected shortfall is, due to cash invariance (for the short position),

ESλ(−pt+τ) = ESλ(−St+τ)−
Bt+τ

BT
K .

We can solve the SDE for (St) with Itô’s formula to get

St+τ = St exp
4
(µ − 1

2
σ2)τ + σ(Wt+τ − Wt)

5
.

Thus, with positive homogenienty of expected shortfall,

ESλ(−pt+τ) = St ESλ(−X)− Bt+τ

BT
K ,

8
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Minimum margin formula Risk factor formula
Long forward K0 − Kt + Kt · “risk factor” ESλ(X) + 1
Short forward Kt − K0 + Kt · “risk factor” ESλ(−X)− 1

Table 2: Minimum margin with r = 0. Here K0 is the trade price, Kt the current market price,
X := exp(µ̄ + σ̄Z), with Z ∼ N(0, 1) and with µ̄ := (µ − 1

2 σ2)τ, σ̄ := σ
√

τ.

where X := exp(µ̄ + σ̄Z), with Z ∼ N(0, 1) and with µ̄ := (µ − 1
2 σ2)τ, σ̄ := σ

√
τ. We have

analytic expression for ESλ(−X) given by (18).

For a long forward position we have (due to cash invariance, positive homogeniety)

ESλ(pt+τ) = ESλ(St+τ) +
Bt+τ

BT
K = StESλ(X) +

Bt+τ

BT
K .

Note on current underlying price

In practice we may not have real time information on St i.e. the current underlying. Nevertheless
the exchange will have an order book for the relevant forwards (or even a current traded exercise
price Kt and so we can take St =

Bt
BT

Kt.

Explaining the risk measure in terms of quoted price moves

Consider a trader who entered a long forward at K0. The current (time t) quoted price is Kt. We
wish to see the expected shortfall primarily as

ESλ(pt+τ) = K0 − Kt + Kt · “risk factor”.

This way we see that if the price on the market is Kt > K0 then the expected shortfall has gone
down and vice versa. We can achieve this view with simple manipulation:

ESλ(pt+τ) = StESλ(X) +
Bt+τ

BT
K0 ≈ Bt

BT
(KtESλ(X) + K0)

=
Bt

BT
(K0 − Kt + Kt((ESλ(X) + 1)) .

This is, up to discounting, what we wanted and in particular if r = 0 we have the above with
“risk factor” := ESλ(X) + 1.

For a short position the calculation is

ESλ(−pt+τ) = StESλ(−X)− Bt+τ

BT
K0 ≈ Bt

BT
(KtESλ(−X)− K0)

=
Bt

BT
(Kt − K0 + Kt((ESλ(−X)− 1)) .

This is summarised, for r = 0, in Table 2.

Analytic approximation based on hedging portfolio

In case the risk horizon τ > 0 is short we may derive a useful approximation from the replicating
portfolio representation of the option price. Indeed let v be given by

v(t, S) := BtE
Q

2
g(ST)

BT

&&&St = S
3

.

9
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Then using the “delta-hedging” strategy

vt+τ = vt +
! t+τ

t

∂v
∂S

(u, Su) dSu +
! t+τ

t

vu − Su
∂v
∂S (u, Su)

Bu
dBu

= vt +
! t+τ

t
Su

∂v
∂S

(u, Su)µ du +
! t+τ

t
Su

∂v
∂S

(u, Su)σ dWu +
! t+τ

t
r[vu − Su

∂v
∂S

(u, Su)] du

= vt +
! t+τ

t
Su

∂v
∂S

(u, Su)(µ − r) du +
! t+τ

t
Su

∂v
∂S

(u, Su)σ dWu +
! t+τ

t
rvu du

If we assume that τ > 0 is small then we can approximate this as

vt+τ ≈ (1 + τr)vt + St
∂v
∂S

(t, St)(µ − r) τ + St
∂v
∂S

(t, St)σ
√

τZ , (11)

where Z ∼ N(0, 1).

We now consider the expected shortfall for a trader who sold such option. From (11) and with
cash invariance

ESλ(−vt+τ) ≈ ESλ

4
−(1 + τr)vt − St

∂v
∂S

(t, St)(µ − r) τ − St
∂v
∂S

(t, St)σ
√

τZ
5

= (1 + τr)vt + St
∂v
∂S

(t, St)(µ − r) τ + ESλ

4
−St

∂v
∂S

(t, St)σ
√

τZ
5

If ∂v
∂S (t, St) ≥ 0 then positive homogeniety leads to (Stσ

√
τ > 0 always):

ESλ

4
St

∂v
∂S

(t, St)σ
√

τ(−Z)
5
= St

∂v
∂S

(t, St)σ
√

τESλ (−Z) .

If ∂v
∂S (t, St) < 0 then

ESλ

4
St

∂v
∂S

(t, St)σ
√

τ(−Z)
5
= −St

∂v
∂S

(t, St)σ
√

τESλ(Z) .

Since for Z ∼ N(0, 1) ∼ −Z we have ESλ(Z) = ESλ(−Z), we finally obtain

ESλ(−vt+τ) ≈(1 + τr)vt + St
∂v
∂S

(t, St)(µ − r) τ

+ sgn
4

∂v
∂S

(t, St)

5
St

∂v
∂S

(t, St)σ
√

τESλ (Z) .

Note that this approximation has a tendency to notably underestimate the expected shortfall, see
Figure 1. The approximation is useful as control variate in Monte-Carlo simulation.

Analytic approximation based on the Black–Scholes formula

We know that

vt+τ = St+τ P1(St+τ , K, T − t, r, σ)− e−r(T−(t+τ))KP2(St+τ , K, T − t, r, σ)

≈ St+τ P1(St, K, T − t, r, σ)− e−r(T−t)KP2(St, K, T − t, r, σ) .

Keeping K, T − t, r, σ fixed in what follows, writing Pi(St) := Pi(St, K, T − t, r, σ), and taking
X ∼ e(µ−

1
2 σ2)τ+τσZ with Z ∼ N(0, 1), we get

ESλ(−vt+τ) ≈ StP1(St)ESλ(−X)− e−r(T−t)KP2(St) ,

i.e. we just need the expected shortfall of negative lognormal r.v.

10



Margins and Credit Risk 5. MODELS

Figure 1: The analytic approximation for expected shortfall is not precise enough but it is very
good basis for control variate. The control variate estimator used N = 5000 samples. The plain
Monte Carlo used N = 50 000.

Explaining the risk measure in terms of quoted price moves

In fact on the exchange when the trade is entered, no money changes hands and all is handled at
settlement. So the minimum margin for short call should in fact be

mt = ESλ(−vt+τ + ertv0) = ESλ(−vt+τ)− ertv0 .

And so

mt ≈ StP1(St)ESλ(−X)− e−r(T−t)KP2(St)− ertv0

= vt − ertv0 + StP1(St) (ESλ(−X)− 1) .

For someone who bought a call i.e. for a long call this is

mt = ESλ(vt+τ − ertv0) = ESλ(vt+τ) + ertv0

≈ StP1(St)ESλ(X) + e−r(T−t)KP2(St) + ertv0

= ertv0 − vt + StP1(St) (ESλ(X) + 1) .

If we write pt for the time t price of a call option then for a short put we have

mt = ESλ

6
−pt+τ + ert p0

7
= ESλ (−pt+τ)− ert p0 .

From (22) we get

mt = ESλ

(
St+τ(1 − P1(St+τ))− Ke−r(T−(t+τ))(1 − P2(St+τ))

)
− ert p0

≈ ESλ

(
St+τ(1 − P1(St))− Ke−r(T−t)(1 − P2(St)

)
− ert p0

= St(1 − P1(St))ESλ(X) + Ke−r(T−t)(1 − P2(St))− ert p0

= pt − ert p0 + St(1 − P1(St)) (ESλ(X) + 1) .

Finally for a long put we have

mt = ESλ

6
pt+τ − ert p0

7
= ESλ (pt+τ) + ert p0 .

Then

mt ≈ ESλ

(
Ke−r(T−t)(1 − P2(St))− St+τ(1 − P1(St))

)
+ ert p0

= St(1 − P1(St))ESλ(−X)− Ke−r(T−t)(1 − P2(St) + ert p0

= ert p0 − pt + St(1 − P1(St)) (ESλ(−X)− 1) .

This is summarised, for r = 0, in Table 3.

11
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Minimum margin formula Risk factor formula
Short call vt − v0 + St · “risk factor” P1(St) (ESλ(−X)− 1)
Long call v0 − vt + St · “risk factor” P1(St) (ESλ(X) + 1)
Short put pt − p0 + St · “risk factor” (1 − P1(St)) (ESλ(X) + 1)
Long put p0 − pt + St · “risk factor” (1 − P1(St)) (ESλ(−X)− 1)

Table 3: Minimum margin with r = 0 in Black–Scholes model. Here v0, p0 is the trade price for
call and put respectively, vt, pt the current market prices for call and put respectively, St is the
underlying price, X := exp(µ̄ + σ̄Z), with Z ∼ N(0, 1) and with µ̄ := (µ − 1

2 σ2)τ, σ̄ := σ
√

τ.
Moreover P1(St) = P1(St, K, T − t, r, σ) is given in (21).

5.2 Black–Scholes Model with Jumps

In the Black–Scholes model with jumps we again assume that time-value of money is given by a
risk-free asset

dBt = rBt dt , B0 = 1

The risky asset price is given by13

dSt = µSt− dt + σSt− dWt + St−(dJt − αγ dt) , S0 = S .

Here W = (Wt)t∈[0,T] is a one dimensional Wiener process (Brownian motion) under the real-
world measure P and the pure jump process J is given by compound Poisson process

Jt =
Nt

∑
j=1

(eZj − 1) ,

with some jump times 0 < τ1 < τ2 < · · · and Nt := sup{n : τn ≤ t}. We will assume that N
is a Poisson process independent of W with rate γ i.e. that the inter arrival times τj+1 − τj follow
exponential distribution with this γ so that P(τj+1 − τj ≤ u) = 1 − e−γu. It is possible to assume
various distributions for Zj but the simplest reasonable assumption is that they are mutually
independent, independent of the inter arrival times and of W and and identically distributed
with α := E

"
eZj − 1

#
the average jump size. Let (Ft)t≥0 be the filtration generated by W and J.

Due to this and the independence of increments of Jt we have, for t > s ,

E [Jt − tγα|Fs] = E [Jt − Js|Fs] + Js − tγα = E [Jt − Js] + Js − tγα = Js − sγα

and so the process given by Jt − tγα is a martingale.

For t ∈ [τj−1, τj) we have

St = Sτj−1 exp
24

µ − 1
2

σ2 − αγ

5
(t − τj−1) + σ(Wt − Wτj−1)

3

as for geometric brownian motion without jumps. Then at t = τj

∆Sτj = Sτj − Sτj− = Sτj−(Jτj − Jτj−) = Sτj−(e
Zj − 1)

and so Sτj = Sτj−eZj which means that

Sτj = Sτj−1 exp
24

µ − 1
2

σ2 − αγ

5
(τj − τj−1) + σ(Wt − Wτj−1)

3
exp(Zj) .

Recursively, we then get that for any t ≥ 0

St = S0 exp
24

µ − 1
2

σ2 − αγ

5
t + σWt

3 Nt

∏
j=1

exp(Zj) .

13 As usual St− := limu↗t Su.
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We can write St = S0eXt where

Xt =

4
µ − 1

2
σ2 − αγ

5
t + σWt +

Nt

∑
j=1

Zj .

Characteristic Function

There are no explicit formulae for e.g. options prices or expected shortfall in the jump-diffusion
model. However, efficient calculations are possible since we can calculate the characteristic func-
tion14 of Xt exactly.

Due to the independence assumption

φXt(u) = E
"
eiu((µ− 1

2 σ2−αγ)t+σWt)
#

E

2
eiu ∑

Nt
j=1 Zj

3
.

Now with the tower property and conditional independence of Zj’s we have

E
2

eiu ∑
Nt
j=1 Zj

3
= E

*
E

*
Nt

∏
j=1

eiuZj

- &&&&Nt

-
= E

"
φZ(u)Nt

#
=

∞

∑
n=0

φn
Z(u)

γntn

n!
e−γt = eγt(φZ(u)−1) ,

where φZ denotes the characteristic function of Zj’s. Hence15

φXt(u) = exp
24

µ − 1
2

σ2 − αγ

5
itu − 1

2
σ2tu2

3
exp [γt(φZ(u)− 1)] . (12)

Risk-neutral Measures and Incompleteness

If we assume that B and S are the only two assets available in this model then it is incomplete.
Indeed, define

Zt = e(γ−γ̃)t
Nt

∏
j=1

γ̃

γ
e−ϕWt− 1

2 ϕ2t .

It can be shown that Zt is a P-martingale and as a consequence of Girsanov’s theorem, under a
new measure dQ = ZT dP (for some fixed time horizon T > 0), J = (Jt)t≥0 is a compound Poisson
process with intensity γ̃, WQ = (WQ

t )t≥0 given by

WQ = Wt + ϕt

is a Wiener process independent of J. Note that the new measure Q depends on choice of γ̃ > 0
and ϕ. Now

d(e−rtSt−) = St−e−rt
"
σ dWQ

t + dJt − γ̃α dt
#

as long as we choose γ̃ > 0 and ϕ such that

(µ − r) + (γ̃ − γ)α − σϕ = 0 . (13)

Since WQ and Jt − γ̃αt are Q-martingales we know that e−rtSt is also a Q-martingale but the
risk-neutral measure is not unique.16 This means that contingent claims cannot be replicated. In
particular the usual delta-hedging strategy will not protect against jumps.

14 For an Rd-valued r.v. X its characteristic function defined as φ(u) := E[eiuX ]. If X has the law µ then we see that
φ(u) =

!
Rd eiux µ(dx) which is exactly the Fourier transform of the law µ. If we wish to emphasise the dependence on X

then we will write φX in place of φ.
15 For Z ∼ N(a, b2) we have φZ(u) = eiau− 1

2 b2u2
.

16 Since we are solving one equation, namely (13), with two unknowns.
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For simplicity we will assume that γ = γ̃ so that ϕ = µ−r
σ and we have

Xt =

4
r − 1

2
σ2 − αγ

5
t + σWQ

t +
Nt

∑
j=1

Zj

and from (12) we see its characteristic function under Q is

φQ
Xt
(u) = exp

24
r − 1

2
σ2 − αγ

5
itu − 1

2
σ2tu2

3
exp [γt(φZ(u)− 1)] . (14)

We now fix the density f of Yj so that (1 + Yj) ∼ ea+bZj for Zj ∼ N(0, 1). This means that

1 + Yj are log-normally distributed with mean a and variance b2 and α = EYj = ea+ 1
2 b2 − 1.

Pricing European options with Fourier transform

Once we have fixed the market price of risk and the associated risk neutral measure Q we have
that any contingent claim X has price at time t given by (6). For a call option with strike K > 0
this is

ct = e−r(T−t)EQ [(ST − K)+|Ft] = Ste−r(T−t)EQ
"
(eXT − ek)+|Ft

#

where k is such that K
St

= ek.

Without loss of generality we take t = 0 and define

C(k) := e−rTEQ
"
(eXT − ek)+

#
.

Even though there is no closed-form formula, this quantity can be evaluated efficiently using the
discrete Fourier transform, see Carr and Madan [3]. Here we give the main ingredients of the
algorithm. Since Ck is not an integrable function of k its Fourier transform is not defined. Instead,
we consider

z(k) := C(k)− CBS(k)

where CBS is the price of a call option with strike ek, see Appendix A.5. It can be shown that
k (→ z(k) is integrable and moreover its Fourier transform is

ζT(v) := (Fz)(v) =
!

R
eivkz(k) dk = eivrT Φ(1)

T (v − i)− Φ(2)
T (v − i)

iv(1 + iv)

where Φ(1)
T is the characteristic function of Xt under Q so, due to (14), this is

Φ(1)
T (u) = exp

.4
r − 1

2
σ2 − αγ

5
T iu − 1

2
σ2Tu2

/
exp {γT(φZ(u)− 1)}

and where Φ(2)
T is the characteristic function of the risky asset price process in the Black–Scholes

model, so due to (14) with γ = 0, this is

Φ(2)
T (u) = exp

.4
r − 1

2
σ2

5
T iu − 1

2
σ2Tu2

/
.

Finally, to obtain C(k) we invert the Fourier transform:

C(k) = z(k) + CBS(k) =
1

2π

!

R
ζT(v)e−ivk dv + CBS(k) . (15)

We note that since z(k) is real we can conclude that v (→ ζT(v) is odd in its imaginary part and
even in its real part and so ζT(v)e−ivk = ζT(v)eivk which means it suffices to integrate over the
positive real axis:

C(k) =
1
π

! ∞

0
ζT(v)e−ivk dv + CBS(k) .
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If we only want to have the option value for one strike then the inverse of the Fourier transform
is best obtained by numerical integration while if we want to know the option price for a range of
strikes one should use the Discrete Fourier transform.17 See Appendix A.7 for more detail.

Forwards in Black–Scholes model with jumps

From Section 5.1 we know that the key quantity that needs to be calculated is

ESλ(−St+τ) = StESλ(−eXt+τ ) and ESλ(St+τ) = StESλ(eXt+τ ) .

Take T = t+ τ. We also recall (5) which tells us that we can view the expected shortfall calculation
as a 1D minimisation problem. This can be done efficiently as long as we can calculate E[(−eXT −
v)+] and E[(eXT − v)+] efficiently.

Let us start with the former. We note that for all v ≥ 0 we have E[(−eXT − v)+] = 0 and so we
only need to consider v = −ek for k ∈ R so that E[(−eXT − v)+] = E[(ek − eXT )+].

(ek − eXT )+ − (eXT − ek)+ = ek − eXT

Moreover the process e−µ teXt is a P-martingale which means that E[eXT ] = eµT and so

E[(ek − eXT )+] = ek − eµT + E[(eXT − ek)+] = ek − eµT + eµTC(k) ,

where C(k) := e−µTE[(eXT − ek)+]. This C(k) is identical to European option price (with interest
rate parameter µ) in jump-diffusion models and is obtained by (15). So, since E[(−eXT − v)+] = 0
for v ≥ 0 we have

ESλ(eXT ) = inf
v∈R

.
v +

1
λ

E[(−eXT − v)+]
/

= min
2

0, inf
v∈(−∞,0)

.
v +

1
λ

E[(−eXT − v)+]
/3

= min
2

0, inf
k∈R

.
−ek +

1
λ

E[(ek − eXT )+]

/3
.

Hence

ESλ(eXT ) = min
2

0, inf
k∈R

.
−ek +

1
λ

(
ek − eµT + eµTC(k)

)/3
.

Let us look at E[(eXT − v)+]. Clearly if v ≤ 0 then E[(eXT − v)+] = E[eXT ]− v = eµT − v. If
v > 0 then we take ek = v and get that

E[(eXT − v)+] = E[(eXT − ek)+] = eµTC(k) .

As before C(k) is identical to European option price (with interest rate parameter µ) in jump-
diffusion models and is obtained by (15). So

ESλ(−eXT ) = inf
v∈R

.
v +

1
λ

E[(eXT − v)+]
/

= min
2

inf
v∈(−∞,0]

.
v +

1
λ

(
eµT − v

)/
, inf

v∈(0,∞)

.
v +

1
λ

E[(eXT − v)+]
/3

.

Hence

ESλ(−eXT ) = min
2

1
λ

eµT , inf
k∈R

.
ek +

1
λ

eµTC(k)
/3

.

17 If, for purposes of numerical integration, we approximate the real numbers by a finite partition of size N then simple
numerical integration will need to evaluate ζT order of N times. The Discrete Fourier transform needs order of N log N
evaluations.
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A Appendix

A.1 Expected shortfall of Z ∼ N(0, 1)

Consider Z ∼ N(0, 1). We immediately note that since −Z ∼ N(0, 1) due to symmetry, we have
ESλ(−Z) = ESλ(Z).

Moreover VaRα(Z) = −F−1
Z (α) and, using (2),

ESλ(Z) =
1

P(Z < F−1
Z (λ))

E
"
−Z1Z<F−1

Z (λ)

#
= − 1

λ
E
"

Z1Z<F−1
Z (λ)

#

= − 1
λ

! F−1
Z (λ)

−∞
z fZ(z) dz ,

(16)

where fZ denotes the density of N(0, 1).

A.2 Expected shortfall of lognormal r.v.s

Consider a lognormal r.v.
X := exp (µ̄ + σ̄Z) ,

where Z ∼ N(0, 1). Then

ESλ(X) = − eµ̄+ σ̄2
2

λ
FZ

(
F−1

Z (λ)− σ̄
)

. (17)

We will now show why this is the case: first we note that

F−1
X (α) = exp

(
µ̄ + σ̄F−1

Z (α)
)

.

By definition of expected shortfall

ESλ(X) =
1
λ

! λ

0
−F−1

X (α) dα = − 1
λ

! λ

0
exp

(
µ̄ + σ̄F−1

Z (α)
)

dα .

With a change of variable and writing fZ for the density of Z we get

ESλ(X) = − eµ̄

λ

! F−1
Z (λ)

−∞
eσ̄z fZ(z) dz .

Completing the squares and another change of variable leads to

ESλ(X) = − eµ̄+ σ̄2
2

λ

! F−1
Z (λ)−σ̄

−∞
e−

1
2 y2

dy = − eµ̄+ σ̄2
2

λ
FZ

(
F−1

Z (λ)− σ̄
)

.

A.3 Expected shortfall of negative lognormal r.v.s

Consider a negative lognormal r.v.

Y := − exp (µ̄ + σ̄Z) ,

where Z ∼ N(0, 1). Then

ESλ(Y) =
eµ̄+ σ̄2

2

λ

"
1 − FZ

(
F−1

Z (1 − λ)− σ̄
)#

. (18)

We will now show why this is the case: first we note that

F−1
Y (α) = − exp

(
µ̄ + σ̄F−1

Z (1 − α)
)

.
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By definition of expected shortfall

ESλ(Y) =
1
λ

! λ

0
−F−1

Y (α) dα =
1
λ

! λ

0
exp

(
µ̄ + σ̄F−1

Z (1 − α)
)

dα .

With a change of variable and writing fZ for the density of Z we get

ESλ(X) =
eµ̄

λ

! ∞

F−1
Z (1−λ)

eσ̄z fZ(z) dz .

Completing the squares and another change of variable leads to

ESλ(X) =
eµ̄+ σ̄2

2

λ

! ∞

F−1
Z (1−λ)−σ̄

1√
2π

e−
1
2 y2

dy =
eµ̄+ σ̄2

2

λ

"
1 − FZ

(
F−1

Z (1 − λ)− σ̄
)#

.

A.4 Put-Call parity

Say ct, pt are the time t call and put price respectively. Then the following identity holds

pt = ct − St + KD(t, T) , (19)

where D(t, T) is the discount factor between t and T e.g. D(t, T) = e−r(T−t) if we assume constant
continuously compounded interest rate.

A.5 Black–Scholes formula

For current risky asset price S, call strike K, time-to-exercise is T constant risk-free rate r, volatility
σ the call option price is given by

BSformulaCall(S, K, T, r, σ) = SN(d1)− Ke−rT N(d2) (20)

where N is the distribution function (cumulative) of the standard normal density and

d1 =
ln S

K +
(

r + σ2

2

)
T

σ
√

T
, d2 = d1 − σ

√
T − t .

It is sometimes convenient to define

P1(S, K, T, r, σ) := N(d1) and P2(S, K, T, r, σ) := N(d2) . (21)

With put-call parity we moreover have

BSformulaPut(S, K, T, r, σ) = Ke−rT(1 − P2(S))− S(1 − P1(S)) . (22)

A.6 Historical volatility estimation for Black–Scholes model

Consider time-points (ti)i=0N and let ∆ti := ti − ti−1, i = 1, . . . , N. For the underlying risky asset
we have

Sti = Sti−1 exp
4
(µ − 1

2
σ2)(∆ti) + σ(Wti − Wti−1)

5
.

Then (with d
= denoting equal distributions)

ln
Sti

Sti−1

d
= (µ − 1

2
σ2)(∆ti) + σ

8
∆tiZi) ,
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where Zi are iid N(0, 1). Let Xi := ln
Sti

Sti−1
. Then

Var(Xi) = (∆ti)σ
2Var(Zi) = (∆ti)σ

2 .

And so

σ2 = Var
4

Xi√
∆ti

5
.

Thus, if (si)i are actual empirical observations of our time-series and at times ti and we take
xi := ln si

si−1
, x̄ := 1

N ∑N
i=1 xi, we then have

σ2 ≈ 1
N − 1

N

∑
i=1

(xi − x̄)2

∆ti
.

A.7 Fast Fourier Transform for Fourier Transform Approximation

We broadly follow [4, Ch. 11, Section 1] and [3, Section 4] and start by noting that FFT will
efficiently evaluate

x(u) =
N−1

∑
j=0

exp
4
−i

2π

N
j u

5
ξ(j) for u = 0, . . . , N − 1 (23)

as long as N is a power of 2. This can be used to calculate

C ∋ k (→ f (k) =
1

2π

!

R
ζ(v)e−ivk dv ∈ C.

General case To approximate the integral take A > 0 and N ∈ N large so that with the grid
vj := −A/2 + jη, η := A/(N − 1) we have

f (k) ≈ 1
2π

! A
2

− A
2

ζ(v)e−ivk dv ≈ 1
2π

N−1

∑
j=0

wjζ(vj)e
−ivjk A

N

=
N−1

∑
j=0

wjζ
(
− A

2 + jη
)

e−i
!
− A

2 +jη
"

k 1
2π

A
N

,

where wj are weights for a given integration rule e.g. w0 = wN−1 = 1
2 and wj = 0 for j =

1, . . . , N − 2. Now take ku := 2π
N

1
η u so that

f (ku) ≈
N−1

∑
j=0

wjζ
(
− A

2 + jη
)

e−i 2π
N ju 1

2π

A
N

e
A
2

2π
N

1
η u .

Now let

ξ(j) := wjζ
(
− A

2 + jη
) 1

2π

A
N

e
A
2

2π
N

1
η u .

Then

f (ku) ≈
N−1

∑
j=0

ξ(j)e−i 2π
N ju ,

which is exactly in the form (23).
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Method for the case then the transform is real In this case we are more interested in evaluating

R ∋ k (→ f (k) =
1
π

! ∞

0
ζ(v)e−ivk dv ∈ R.

To approximate this we consider η > 0 defining the grid vj := η j, j = 0, . . . , N − 1. Then

f (k) ≈ 1
π

N−1

∑
j=0

ζ(vj)e
−ivjk η (24)

The error arises from integrating only from 0 to Nη and from taking a piecewise constant approx-
imation of the integrand.

We now need to discretize the target space: fix λ > 0 and consider the grid ku := −b + λu for
u = 0, . . . , N − 1. This gives us log-strike levels from −b to b = 1

2 Nλ. Substituting this and the
expression for vj into (24) we arrive at

f (ku) ≈
η

π

N−1

∑
j=0

ζ(vj)e−iη j(−b+λu) =
η

π

N−1

∑
j=0

e−iη jλuζ(η j)eibη j for u = 0, . . . , N − 1 .

Let ηλ = 2π
N and let

ξ(j) =
η

π
ζ(η j)ei bη j for j = 0, . . . , N − 1 .

Then

f (ku) ≈
N−1

∑
j=0

e−i 2Π
N j uξ(j) for u = 0, . . . , N − 1

ie a direct application of the discrete Fourier transform.

Note that [3] propose to improve accuracy with the use of weights coming from Simpson’s
rule:

ξ(j) =
η

π
ζ(η j)ei bη j 1

3
[3 + (−1)j+1 − δj] for j = 0, . . . , N − 1 ,

where δj = 1 for j = 0 and 0 otherwise.
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ity incentivising trading protocol for smart financial products. Vega research paper, 2018.
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